Μονοκρυσταλικά (m-Si)
Οι μονοκρυσταλλικές κυψέλες κατασκευάζονται τεμαχίζοντας έναν ενιαίο κρύσταλλο, (πάχος κυψέλης 1/3 έως 1/2 του χιλιοστού), από ένα μεγάλο πλίνθωμα ενιαίου κρυστάλλου που έχει επεξεργαστεί σε θερμοκρασίες περίπου 1400°C, κάτι που είναι μια πολύ ακριβή διαδικασία. Το πυρίτιο πρέπει να είναι πολύ υψηλής καθαρότητας και να έχει τέλεια δομή κρυστάλλου. Αυτού του είδους τα φωτοβολταϊκά στοιχεία έχουν και την μεγαλύτερη απόδοση, δηλαδή μετατρέπουν μεγαλύτερο ποσοστό της ηλιακής ενέργειας σε ηλεκτρισμό. Η απόδοση τους κυμαίνετε γύρω στο 18%-23%, δηλαδή αν η ηλιακή ακτινοβολία είναι 700 Wh/μ² την ημέρα τότε αυτά θα παράγουν για την συγκεκριμένη μέρα 120 Wh/μ² με 160 Wh/μ².
Πολυκρυσταλικα (p-Si)
Οι πολυκρυσταλλικές κυψέλες γίνονται με μια διαδικασία χύτευσης στην οποία το λειωμένο βιομηχανικό πυρίτιο χύνεται σε μια φόρμα όπου και μορφοποιείται. Κατόπιν τεμαχίζεται στις γκοφρέτες .Δεδομένου ότι οι πολυκρυσταλλικές κυψέλες γίνονται από χύτευση είναι σημαντικά φτηνότερη η παραγωγή τους, αλλά όχι τόσο αποδοτικές όσο και οι μονοκρυσταλλικές. Αυτή η χαμηλότερη αποδοτικότητα, που κυμαίνεται μεταξύ 13% και 15%, οφείλεται στις ατέλειες στη δομή του κρυστάλλου ως αποτέλεσμα της διαδικασίας χύτευσης.
Άμορφου πυριτίου (a-Si)
Το άμορφο πυρίτιο, μια από τις τεχνολογίες λεπτής μεμβράνης (thin film technology), γίνεται με την εναπόθεση του πυριτίου επάνω σε ένα υπόστρωμα γυαλιού από ένα αντιδραστικό αέριο όπως το σιλάνιο (SiH4). Δεν έχει κρυσταλλική δομή, και το πάχος του (2-3 µm) είναι ιδιαίτερα μικρότερο από το κρυσταλλικής μορφής πυρίτιο (200-500 µm). Από κατασκευαστική άποψη είναι το απλούστερο και επομένως το πιο φθηνό, αλλά η απόδοσή του είναι συγκριτικά μικρότερη. Παρόλα αυτά, είναι ικανοποιητική ακόμη και σε συνθήκες έλλειψης ηλιοφάνειας. Τα ηλιακά στοιχεία άμορφου πυριτίου έχουν μια κοκκινωπή-καφέ απόχρωση, σχεδόν μαύρη, και επιφάνεια αποτελούμενη από στενές, μεγάλου μήκους λωρίδες. Η αποδοτικότητα των φωτοβολταϊκών άμορφου πυριτίου κυμαίνεται μεταξύ 4% και 11%, ανάλογα με την τεχνολογία και τα υλικά που χρησιμοποιήθηκαν
Εκτός από τους παραπάνω τρεις τύπους φωτοβολταϊκών κυψελών από πυρίτιο που διατίθενται στην παγκόσμια αγορά, γίνονται έρευνες και προσπάθειες για τη χρησιμοποίηση και άλλων στοιχείων (είτε μόνα τους ή σε συνδυασμό) όπως αρσενικούχο γάλλιο (GaAs),θειούχο κάδμιο (CdS), φωσφορούχο ίνδιο (InP). Επίσης μεγάλο ενδιαφέρον παρουσιάζουν τα φωτοβολταϊκά στοιχεία πολύ λεπτής μεμβράνης από χαλκό-ίνδιο-γάλλιο-diselenide, που έχουν μεγαλύτερη απόδοση (8-13%) από αυτή του άμορφου πυριτίου. Τέλος, μια τελείως νέα τεχνολογία αποτελεί το πρωτοποριακό προϊόν spheral solar, που βασίζεται σε υλικό που αναμένεται να αρχίσει να κατασκευάζεται το 2004. Αντίθετα με τα συμβατικά φωτοβολταϊκά κύτταρα, το νέο υλικό δεν επικάθεται σε άκαμπτη βάση πυριτίου, αλλά είναι φτιαγμένο από χιλιάδες πάμφθηνα σφαιρίδια πυριτίου (κατασκευάζονται από υπολείμματα πυριτίου που προκύπτουν από τη βιομηχανία των chips των ηλεκτρονικών υπολογιστών), εγκλωβισμένα ανάμεσα σε δύο φύλλα αλουμινίου. Κάθε σφαιρίδιο λειτουργεί ως ανεξάρτητο μικροσκοπικό φωτοβολταϊκό κύτταρο, απορροφώντας την ηλιακή ακτινοβολία και μετατρέποντάς την σε ηλεκτρισμό. Τα φύλλα αλουμινίου προσδίδουν στο υλικό τη φυσική αντοχή που χρειάζεται, του επιτρέπουν να είναι εύκαμπτο αλλά και ελαφρύ, ενώ ταυτόχρονα παίζουν το ρόλο ηλεκτρικής επαφής. Η γεμάτη φυσαλίδες επιφάνεια που δημιουργούν τα σφαιρίδια επιτρέπει πολύ μεγαλύτερη απορρόφηση ηλιακού φωτός, χαρίζοντας στο υλικό αποδοτικότητα της τάξης του 11%. Οι εφευρέτες του υποστηρίζουν ότι μπορεί να καλύψει οποιουδήποτε σχήματος επιφάνειες, αυξάνοντας κατά πολύ τους χώρους όπου μπορεί να παραχθεί ηλεκτρική ενέργεια και δίνοντας στους αρχιτέκτονες τη δυνατότητα να σχεδιάσουν κτίρια με καμπύλες που θα μπορούν να είναι εξοπλισμένα με φωτοβολταϊκά χωρίς μάλιστα να απαιτούνται ενισχυμένες κατασκευές για την στήριξή τους όπως αυτό της παραπάνω φωτογραφίας.
Ένα χαρακτηριστικό των φωτοβολταϊκών στοιχείων είναι ότι η απόδοση τους επηρεάζεται από την θερμοκρασία που αναπτύσσουν κατά την διάθεσή τους στην ηλιακή ακτινοβολία. Η επιρροή αυτή διαφέρει με τον τύπο του φωτοβολταϊκού. Σε γενικές γραμμές η αποδοτικότητα μεταβάλλεται σε σχέση με την θερμοκρασία του φωτοβολταϊκού όπως στο παρακάτω σχήμα.
Energy Point - Το περιοδικό για την ενέργεια